Modeling and Control of Renewable Energy Systems
Modeling and Control of Renewable Energy Systems (Vorlesung)
Termine
- 16.12.2022 09:45-12:15 , Optionaler Reservetermin. Die Vorlesung von Professor Hackl beginn am 13.01.2023.
Optional reserve date. Professor Hackl's lecture begins on January 13, 2023.
- 16.12.2022 13:15-14:45 , Optionaler Reservetermin. Die Vorlesung von Professor Hackl beginn am 13.01.2023.
Optional reserve date. Professor Hackl's lecture begins on January 13, 2023.
- 23.12.2022 09:45-12:15 , Optionaler Reservetermin. Die Vorlesung von Professor Hackl beginn am 13.01.2023.
Optional reserve date. Professor Hackl's lecture begins on January 13, 2023.
- 23.12.2022 13:15-14:45 , Optionaler Reservetermin. Die Vorlesung von Professor Hackl beginn am 13.01.2023.
Optional reserve date. Professor Hackl's lecture begins on January 13, 2023.
- 13.01.2023 09:45-12:15
- 13.01.2023 13:15-14:45
- 20.01.2023 09:45-12:15
- 20.01.2023 13:15-14:45
- 27.01.2023 09:45-12:15
- 27.01.2023 13:15-14:45
- 03.02.2023 09:45-12:15
- 03.02.2023 13:15-14:45
- 10.02.2023 09:45-12:15
- 10.02.2023 13:15-14:45
Teilnahmekriterien
Lernziele
After successful participation of this module you are capable of:
a) "Power Electronics for Renewable Energy Systems":
• Understanding, analyzing and designing power electronic circuits for regenerative energy systems
• Understanding protective mechanisms of power electronic circuits
• remembering the most important semiconductors, their parameters and their parasitic effects
b) "Modeling and Control of Renewable Energy Systems ":
• analyzing the working and energy conversion principle(s) of renewable energy systems
• understanding and deriving of state-space models of components of renewable energy systems
• understanding, applying and implementing control methods for machine- and grid-side components
• understanding, applying and implementing operation management methods for renewable energy systems
Beschreibung
-------------------------------------------------------------------------------------------------
English-title: Modeling and Control of Renewable Energy Systems
-------------------------------------------------------------------------------------------------
This lecture will be held in English language.
This lecture belongs to the TUM-Module:
Renewable Energy Systems: Power Electronics, Modeling and Control
-------------------------------------------------------------------------------------------------
The module -Renewable Energy Systems: Power Electronics, Modeling and Control- deals with working principles, modeling and control of and power electronics for renewable energy systems (e.g. photovoltaic or wind turbine systems). It consists of two of two sub-modules:
- Power Electronics for Renewable Energy Systems (2SWS) and
- Modeling and Control of Renewable Energy Systems (2SWS)
The contents of both sub-modules are:
- Power Electronics for Renewable Energy Systems
• Active and passive components for power electronics, driving circuits,
• Basic circuits for grid integration
• Power electronics for photovoltaic and wind energy
• Power electronics for battery storage systems
• Regulations and standards
- Modeling and Control of Renewable Energy Systems
• Working and energy conversion principles of renewable energy systems
• Nonlinear state-space modeling of components (e.g. turbine, generators, converters, dc-link, grid filters) of renewable energy systems
• Control of machine- and grid-side components (e.g. speed, current, voltage and power control) of renewable energy systems
• Grid synchronization and optimal operation of renewable energy systems
Inhaltliche Voraussetzungen
Basic knowledge of :
• linear algebra,
• differential equations,
• complex phasor theory
• Laplace / Fourier transformation
• electrical machines (desirable)
• power electronics (desirable)
• control engineering (desirable)
Lehr- und Lernmethoden
Classroom (60 hours):
The module consists of two lectures (sub-modules à 2SWS). The content is presented during lectures by presentations, talks, tutorials, interactive discussions, demonstrations and black/white board sessions.
Self-Study (90 Stunden):
• Preparation and review of the lectures
• Solving problems (solutions provided)
• preparation for examination
Studien-, Prüfungsleistung
During the final examination (90 min), the students shall proof by solving problems that basic concepts, power electronic actuators, working/energy conversion principles, modeling and control techniques for renewable energy systems were understood and could be reproduced. The examination is a closed-book exam; solely an unchanged formulary (provided by the lecturers) is admissible.
Empfohlene Literatur
* C. M. Hackl, C. Dirscherl and K. Schechner, "Modellierung und Regelung von modernen Windkraftanlagen", in D. Schröder "Elektrische Antriebe - Regelung von Antriebssystemen", Berlin: Springer-Verlag, 2020 (english translation is available at: https://arxiv.org/pdf/1703.08661.pdf). * C. M. Hackl, "Non-identifier based adaptive control in mechatronics: Theory and application", Berlin: Springer-Verlag, 2017. * D. Schröder, "Elektrische Antriebe - Grundlagen", 3. Auflage, Springer-Verlag, Berlin, 2007 * D. Schröder, "Leisungselektronische Schaltungen", 2. Auflage, Springer-Verlag, Berlin, 2008 * M. Michel, "Leistungselektronik", Springer-Verlag, Berlin, 2011 * V. Quaschning, "Regenerative Energiesysteme", 7., aktualisierte Auflage, Hanser-Verlag, München, 2011
Links