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Introduction

Since 1954 CERN, The European Organization for Nuclear Research, operates high energy accelerators for particle physics research.

Material flow out of the accelerator facilities and experimental zones originates from maintenance, repair and upgrade actions as well as from decommissioning.
After several years of operation, due to beam losses and particle interactions, radioactivity can be induced in certain accelerator components. For safe handling,
transport and elimination of these components it is essential to perform a reliable radiological characterization already at the exit of the accelerator.

1 Induced Radioactivity in High-Energy Accelerators 3 Radionuclide Inventories / Activity Limits [Switzerland & France]
» In High-energy accelerators proton losses create hadronic showers. The mass specific activity is, apart from dose rate and surface contamination,
The showers consist of secondary n, p, 7™, v~ & photons. one of the main criteria for the radiological characterization. Since CERN's

installations straddle across the French-Swiss boarder, for elimination of
material as TFA(Tres faible activité) to France the IRAS classification and for
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are used to obtain e.g. particle spectra, radionuclide production rates, dose
rate/activity conversion factors or geometrical effects
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5 Conclusion and Future Prospects

» The current process has been established & validated
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Figure: Possible future characterization process
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