

Max-Planck-Institut für Plasmaphysik

"Study of the hydraulic Properties of the Components in Plasma Vessel of the Wendelstein 7-X and of its Cooling System"

By Guillermo Orozco

INTRODUCTION

Wendelstein 7-X is an experimental Fusion reactor of the Stellarator concept for magnetic confinement approach. It uses 70 superconducting non-planar modular coils, optimized to create a special magnetic configuration (fig. 1). They must be cooled at 3.4 K, while the plasma reach up to 140 mill K. A heat shield must protect all the components in the machine from the plasma and the heat must be removed during the long pulse operation (up to 30 min).

μμ

Figure 1: W-7X coil configuration and plasma geometry (yellow)

MOTIVATIONS

MODEL CHECK

- For the complex active water-cooled system of the Plasma Facing Components of the W7-X, a model is needed before everything is assembled.
- The previous analysis of the Cooling Loops can lead to their optimization with orifices and a first estimation of the working parameters can be obtained.
- In order to perform "in situ" flow measurements after the assembly, a favorable method must be found and its agreement with the simulation must be tested.

PLASMA FACING COMPONENTS (PFC)

- **Protect** the plasma vessel
- **Control** plasma/wall **interaction**
- Heat removal
- **Fusion ash exhaust** •

According to 3D Position in respect to the plasma (*fig 3*) the Heat-load is determined and a different PFC technologies are used.

	Max heat-flow (Mw/m ²)	Surface covered %	Technology used (water cooled)
Divertor	10	13	CFC tiles brazed to CuCrZr heat sink
Baffle	0.5	19	CFC tiles screwed to SS heat sink

1. Pressure Drop Measurement More than 100 single components (*Baffle and Heatshield*) measured \rightarrow good accordance between measured and calculated values (*fig* 7).

A hydraulic pipe system is modeled with the Darcy-Weissbach equation $\Delta p = \mathbf{K} \cdot \mathbf{Value} \cdot \mathbf{V}^2 + \Delta p_0$

2. Flow Distribution

in an assembled "cooling loop", a Divertor Unit. Composed of Target Elements (TE) as heat sinks (*copper colored fig 8*) connected with pipe work and inlet/outlet manifolds).

Each TE is hydraulically unique due to its manufacturing process, different gap geometries have been observed, connecting the intern meanders.

1D Simulation 1D – **3D** CFD coupled simulation \rightarrow manifold influence check.

1D-modell coupled with a 3D -CFD code for the manifold description (*fig 9*) **Measurements** – Two methods selected a) **Thermography**→ Too low time and spatial resolution for accurate results. **b)Ultrasonic flow meter** \rightarrow A whole study has been

Figure 8: 12TE in 2x6 Branches

CAD

Figure 3: 1 out of 5 "symmetric" modules of the W7-X

COOLING LOOP MODELING AND ANALYSIS

1D Simulation : electric -resistance model with aid of Flowmaster ® (Fm) Resistances \rightarrow turbulence effects --> pipe wall roughness, pipe bends...

Challenges

- Huge Net (650 PFC, +8 Km Pipe work)
- Geometry description only in CAD

Solution

- Automatization \rightarrow Excel Macros (*fig 4*)
- *"Bottom-Up"* approach (*fig 5*)

Figure 4: Work flow Excel Geometry Simulation Result **Description** || **Parameters** || **Evaluation** VBA Flowmaster **1D Model** electric-type

Figure 5: "Bottom-Up" approach

Figure 9: Coupled CFD + FM

TM9 Branch Flow Distribution performed to check the goodness of its results.

3. Results

- Both models agree with the
- measurements
- The difference between the two models does not justify the use of the more complex "coupled model".
- The Ultrasonic flow meter is the only method available to measure flow in the cooling loops with precautions

COOLING LOOP OPTIMIZATION

By implementing strategically "constrictions" (orifices) in some branches of a cooling loop the flow distribution is optimized to a better balance among branches.

4					

8 Branched Cooling Loop Flow distribution Optimization

Analysis

- Flow and pressure drop distribution in the cooling loop
- Working conditions: Total flow, pressure drop, pumping power

Requirements

1. max branch **flow** \rightarrow damage components (flexible pipes) 2. min branch flow \rightarrow Thermal performance (heat removal) **3. max total** $\Delta P \rightarrow$ damage in components (deformation, cavitation..)

Advantages

- lower total flow needed (up to 30%)
- lower pumping power (up to 30%)
- Lower flow velocity in branches
- Not greater total pressure drop

Disadvantages

• Laborious integration

CONCLUSIONS

The 1D simulation of the cooling system with the method used is efficient and accurate

• Modeled and analyzed :10 Half Modules x 17 Cooling Loops Types = 170 with around 650 Plasma Facing Components and 8Km pipe work

• **Optimized** 10 HM x 3 CL = 30 showing up to 30% saved total flow and pumping power

The ultrasonic flow meter is the suitable as a **measuring technique** for further studies in the cooling loops

Contact person: Guillermo Orozco (g.orozco@mytum.de)