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“Study of the hydraulic Properties of the Components in Plasma Vessel
of the Wendelstein 7-X and of its Cooling System”

By Guillermo Orozco

INTRODUCTION

Wendelstein 7-X Is an experimental Fusion reactor of the Stellarator concept for magnetic confinement approach. It uses 70 superconducting
non-planar modular colils, optimized to create a special magnetic configuration (fig. 1). They must be cooled at 3.4 K, while the plasma reach up

to 140 mill K. A heat shield must protect all the components in the machine from the plasma and the heat must be removed during the long pulse Figure 1: W-7X_coil configuration
operation (up to 30 min). and plasma geometry (yellow)
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For the complex active water-cooled system of the Plasma Facing Components Q
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* Protect the plasma vessel .
2. Flow Distribution
0 stributio Figure 7. Measured vs Modeled K-Value

» Control plasma/wall interaction Long pulse 2 in an assembled “cooling loop”, a Divertor Unit.

* Heat removal water cooling Composed of Target Elements (TE) as heat sinks
* Fusion ash exhaust pec Il PEC - (copper colored fig 8) connected with pipe work and
According to 3D Position In respect to the Inlet/outlet manifolds).
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Measurements — Two methods selected

a) Thermography-> Too low time and spatial
resolution for accurate results.

b)Ultrasonic flow meter = A whole study has been

performed to check the goodness of its results. TM9 Branch Flow Distribution gy
COOLING LOOP MODELING AND ANALYSIS 107 B CFD+FM

B Measurement

Figure 9: Coupled CFD + FM

*Blue : Pipe-work Figure 3: 1 out of 5 “symmetric” modules
of the W7-X

1D Simulation : electric -resistance model with aid of Flowmaster ® (Fm) 3. Results
Resistances = turbulence effects --> pipe wall roughness, pipe bends... « Both models agree with the ’]
Challenges CAD | measurements 2 N 2
» Huge Net (650 PFC, +8 Km Pipe work) Figure 4: Work flow » The difference between the two . Z
» Geometry description only in CAD Excel — models does not justify the use of the 3 =
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« Automatization = Excel Macros (fig 4) only method available to measure 1 2 3 4 : 6
+ “Bottom-Up” approach (iig 5) Flowmaster flow in the cooling loops with Branch
- recautions Figure 10: Flow distribution for 3.3 I/s inlet flow
Single components Pipe work Cooling Loop 1D Model P * In Branch 3 there is no measuring position

electric-type

COOLING LOOP OPTIMIZATION

By implementing strategically “constrictions” (orifices) in some branches of a
cooling loop the flow distribution Is optimized to a better balance among branches.

8 Branched Cooling Loop
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Flow distribution Optimization

Analysis Figure 5: “Bottom-Up” approach Advantages 3,0- N %
» Flow and pressure drop distribution in the cooling loop + lower total flow needed (up to 30%) ~25{  EEEOrifice Solution Z
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3. max total AP-> damage In components
(deformation, cavitation..)

Figure 11: Orifice Optimization of the flow
distribution of the circuit in fig 5

CONCLUSIONS

The 1D simulation of the cooling system with the method used Is efficient and accurate
* Modeled and analyzed :10 Half Modules x 17 Cooling Loops Types = 170 with around 650 Plasma Facing Components and 8Km pipe work
* Optimized 10 HM x 3 CL = 30 showing up to 30% saved total flow and pumping power
The ultrasonic flow meter Is the suitable as a measuring technique for further studies in the cooling loops
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