



Bachelor's / Master's / Semester thesis:

Magnetic separation of proteins, lipids and carbohydrates from biotechnological lysates: from analytical to technical scale.

Keywords: magnetic nanoparticles, macromolecules, adsorption/desorption, biocorona, bio-nano interface

Project description

This project consists in executing adsorption and desorption studies to characterize the different macromolecules in biotechnological lysates that interact with superparamagnetic nanoparticles, and in understanding how they compete to have a place at the nanoparticle surface. After iron oxide nanoparticles are placed in a solution, different mo-

lecules are attracted to the metal surface, forming a halo, commonly called biocorona. Therefore, nanoparticles are a promising bioseparation tool. Adsorption studies are then performed to identify the conditions to have certain selectivity and to separate a specific molecule or group of molecules in lab and technical scale.

Requirements

- Students from biochemistry, chemical engineering, biotechnology and similar.
- Interest for learning a variety of analytical methods.
- Able to work independently and desire to explore the bio nano world!

Methods to be used **CHARGE ORGANIC CONTENT Z- POTENTIAL** U/ TGA **QUANTIFICATION** COLORIMETRIC **SIZE AND METHODS** AGGREGATION $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$ DLS **INTERACTIONS** SIZE AND FT-IR SHAPE TEM

Tasks

- Synthesize and characterize iron oxide magnetic nanoparticles.
- Quantify the biomacromolecules adsorbed into/ desorbed from the surface under different conditions in biotechnological mixtures.
- Characterize the nanoparticle surface after adsorption/desorption.
- Perform a scale-up in the HGMS.

Contact

Lucía Abarca l.abarca@tum.de Office MW2405

To start on March/April